I nt ernet Engi neering Task Force (I ETF) M Bel she

Request for Comments: 7540 Bi t Go
Cat egory: Standards Track R Peon
| SSN: 2070-1721 Googl e, Inc
M Thonson, Ed.

Mozill a

May 2015

Hypertext Transfer Protocol Version 2 (HTTP/2)

Abst ract

This specification describes an optimnm zed expression of the semantics
of the Hypertext Transfer Protocol (HTTP), referred to as HITP
version 2 (HTTP/2). HITP/2 enables a nore efficient use of network
resources and a reduced perception of latency by introducing header
field conpression and allowi ng rmultiple concurrent exchanges on the
sane connection. It also introduces unsolicited push of
representations fromservers to clients.

This specification is an alternative to, but does not obsolete, the
HTTP/ 1.1 nessage syntax. HITP' s existing semantics renmai n unchanged.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww.rfc-editor.org/info/rfc7540

Bel she, et al. St andards Track [Page 1]

RFC 7540 HTTP/ 2 May 2015

Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1.
2.

INtroduCti ON ... 4
HTTP/ 2 Protocol OVEerVIi @Wt e e 5
2.1, Document Organi zati On 6
2.2. Conventions and Terminology 6
Starting HITP/ 2 .. 7
3.1. HITP/2 Version ldentification 8
3.2. Starting HTTP/ 2 for "http" URIS 0., 8
3.2.1. HITP2-Settings Header Field 9
3.3. Starting HTTP/2 for "https" URIs 10
3.4, Starting HTTP/2 with Prior Knowedge 10
3.5. HITP/2 Connection Preface 11
HTITP Frames e e e e e 12
4.1, Frame FOrmal 12
4.2, Frame Size 13
4.3. Header Conpression and Deconpression 14
Streams and Multiplexing 15
5.1, Stream States 16
5.1.1. Streamldentifiers 21
5.1.2. Stream CONCUINTENCY .. oottt e e e e e 22
5.2, Flow Control 22
5.2.1. FlowControl Principles 23
5.2.2. Appropriate Use of Flow Control 24
5.3, Stream Priority 24
5.3. 1. Stream Dependenci €S 25
5.3.2. Dependency Weighting 26
5.3.3. Reprioritization 26
5.3.4. Prioritization State Managenent 27
5.3.5. Default Priorities 28
5.4. Error Handling 28
5.4.1. Connection Error Handling 29
5.4.2. StreamError Handling 29

Bel she, et al. St andards Track [Page 2]

RFC 7540 HTTP/ 2 May 2015
5.4.3. Connection Termnation, 30

5.5. Extending HTTP/ 2 30

6. Frame Definitions 31
6. L. DATA o e 31

6. 2. HEADERS 32

6. 3. PRIORITY .o 34

6. 4. RST_STREAM . .. i 36

6. 5. SETTINGS ... e e 36
6.5.1. SETTINGS Formatiiiiiii i 38

6.5.2. Defined SETTINGS Paranmetersc.. ... 38

6.5.3. Settings Synchronization 39

6.6. PUSH PROM SE e 40

6. 7. PING .. 42

6. 8. COAVAY . e 43
6.9. WINDOWN UPDATE e e 46
6.9.1. The FlowControl Wndow 47

6.9.2. Initial FlowControl Wndow Size 48

6.9.3. Reducing the StreamWndow Size 49

6. 10. CONTINUATI ON . ..t e e e e 49

7. Error CoUeS ..ot 50
8. HITP Message Exchanges i 51
8.1. HITP Request/Response Exchange 52
8.1.1. Upgrading fromHTTP/ 2 53

8.1.2. HITP Header Fields 53

8.1.3. Exanpl es ... 57

8.1.4. Request Reliability Mechanisnms in HTTP/2 60

8.2. Server Push 60
8.2.1. Push Requests 61

8.2.2. Push Responses 63

8.3. The CONNECT Method i 64

9. Additional HTTP Requirenents/Considerations 65
9.1. Connection Managementt 65
9.1.1. Connection ReUSE 66

9.1.2. The 421 (M sdirected Request) Status Code 66

9.2. Use of TLS Features 67
9.2.1. TLS 1.2 Features 67

9.2.2. TLS 1.2 Cipher Suitesc0 .. 68

10. Security ConsideratioOns 69
10. 1. Server Authority 69

10. 2. Cross-Protocol Attacks 69

10. 3. Intermedi ary Encapsulation Attacks 70

10. 4. Cacheability of Pushed Responses 70
10.5. Denial-of-Service Considerations 70
10.5.1. Limits on Header Block Size 71

10.5.2. CONNECT | SSUBS ...ttt e e e e e 72

10. 6. Use of Conpressi ONn e 72

10. 7. Use of Padding i 73
10.8. Privacy Considerations 73

Bel she, et al. St andards Track [Page 3]

RFC 7540 HTTP/ 2 May 2015
11. TANA Considerati ONS e e e 74
11.1. Registration of HTTP/2 ldentification Strings 74
11. 2. Frame Type Regi Stry e 75
11.3. Settings Regi stry 75
11.4. Error Code Regi Stry e 76
11.5. HTTP2-Settings Header Field Registration 77
11.6. PRI Method Registration 78
11.7. The 421 (M sdirected Request) HITP Status Code 78
11. 8. The h2c Upgrade Token i 78
12, ReferencCes 79
12.1. Normative References, 79
12.2. Informative References 81
Appendix A TLS 1.2 Cipher Suite Black List 83
Acknow edgement S 95
Aut hor s’ Addr 8SSES 96
1. Introduction
The Hypertext Transfer Protocol (HTTP) is a wildly successfu
protocol. However, the way HTTP/ 1.1 uses the underlying transport

([RFC7230], Section 6) has several characteristics that have a

negat

In pa

ive overall effect on application performance today.

rticular, HITP/ 1.0 all owed only one request to be outstanding at

a tine on a given TCP connection. HITP/ 1.1 added request pipelining,

but t
suffe
clien
serve

Furth
causi
TCP [
exces
conne

HTTPR/
HTTP

his only partially addressed request concurrency and stil

rs from head-of-1ine blocking. Therefore, HITP/1.0 and HTTP/ 1.1
ts that need to nake many requests use multiple connections to a
r in order to achi eve concurrency and thereby reduce |atency.

ernore, HTTP header fields are often repetitive and verbose,
ng unnecessary network traffic as well as causing the initial
TCP] congestion windowto quickly fill. This can result in
sive latency when nmultiple requests are made on a new TCP
ction.

2 addresses these issues by defining an optinized mappi ng of
s semantics to an underlying connection. Specifically, it

all ows interleaving of request and response nessages on the same

conne
al so
reque

Bel she,

ction and uses an efficient coding for HITP header fields. It
allows prioritization of requests, letting nore inportant
sts conplete nore quickly, further inproving perfornance

et al. St andards Track [Page 4]

RFC 7540 HTTP/ 2 May 2015

The resulting protocol is nore friendly to the network because fewer
TCP connections can be used in conparison to HITP/1.x. This neans

| ess conpetition with other flows and | onger-1lived connections, which
inturn lead to better utilization of avail abl e network capacity.

Finally, HTTP/2 also enables nore efficient processing of nessages
t hrough use of binary nmessage franing

2. HITP/ 2 Protocol Overview

HTTP/ 2 provides an optim zed transport for HITP semantics. HITP/2
supports all of the core features of HITP/1.1 but ains to be nore
efficient in several ways.

The basic protocol unit in HITP/2 is a frame (Section 4.1). Each
frane type serves a different purpose. For exanple, HEADERS and DATA
franes formthe basis of HITP requests and responses (Section 8.1);
other franme types |ike SETTINGS, W NDOW UPDATE, and PUSH PROM SE are
used in support of other HTTP/ 2 features.

Mul ti pl exi ng of requests is achi eved by having each HTTP request/
response exchange associated with its own stream (Section 5).
Streans are largely independent of each other, so a bl ocked or
stall ed request or response does not prevent progress on other
streans.

Fl ow control and prioritization ensure that it is possible to
efficiently use multiplexed streans. Flow control (Section 5.2)
hel ps to ensure that only data that can be used by a receiver is
transmitted. Prioritization (Section 5.3) ensures that linited
resources can be directed to the nost inportant streans first.

HTTP/ 2 adds a new interacti on node whereby a server can push
responses to a client (Section 8.2). Server push allows a server to
specul atively send data to a client that the server anticipates the
client will need, trading off sone network usage agai nst a potenti al
| atency gain. The server does this by synthesizing a request, which
it sends as a PUSH PROM SE frame. The server is then able to send a
response to the synthetic request on a separate stream

Because HITP header fields used in a connection can contain |arge
anounts of redundant data, franes that contain them are conpressed
(Section 4.3). This has especially advantageous inpact upon request
sizes in the common case, allowi ng many requests to be conpressed

i nto one packet.

Bel she, et al. St andards Track [Page 5]

RFC 7540 HTTP/ 2 May 2015

2.

2.

1. Docunent Organization
The HTTP/ 2 specification is split into four parts

o Starting HITP/2 (Section 3) covers how an HTTP/ 2 connection is
initiated.

o The frame (Section 4) and stream (Section 5) |ayers describe the
way HTTP/ 2 frames are structured and forned into nultipl exed
streans.

o Frane (Section 6) and error (Section 7) definitions include
details of the frame and error types used in HTTP/ 2.

0o HITP mappings (Section 8) and additional requirements (Section 9)
descri be how HTTP semantics are expressed using franes and
streans.

Whil e sone of the frane and stream | ayer concepts are isolated from
HTTP, this specification does not define a conpletely generic frane
layer. The frane and stream |l ayers are tailored to the needs of the
HTTP protocol and server push

2. Conventions and Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].
Al'l nuneric values are in network byte order. Values are unsigned
unl ess otherwi se indicated. Literal values are provided in decinal
or hexadeci mal as appropriate. Hexadecimal literals are prefixed
with "Ox" to distinguish themfromdecinmal literals.

The following ternms are used:

client: The endpoint that initiates an HTTP/2 connection. dients
send HTTP requests and receive HITP responses.

connection: A transport-layer connection between two endpoints.

connection error: An error that affects the entire HITP/ 2
connecti on.

endpoint: Either the client or server of the connection

Bel she, et al. St andards Track [Page 6]

RFC 7540 HTTP/ 2 May 2015

frame: The snallest unit of communication within an HTTP/ 2
connection, consisting of a header and a vari abl e-1ength sequence
of octets structured according to the frane type.

peer: An endpoint. Wen discussing a particul ar endpoint, "peer"
refers to the endpoint that is renote to the prinmary subject of
di scussi on.

receiver: An endpoint that is receiving franes.
sender: An endpoint that is transmtting franes.

server: The endpoint that accepts an HITP/ 2 connection. Servers
receive HTTP requests and send HTTP responses.

stream A bidirectional flow of frames within the HITP/ 2 connecti on
streamerror: An error on the individual HTTP/ 2 stream

Finally, the terns "gateway", "internediary", "proxy", and "tunnel"
are defined in Section 2.3 of [RFC7230]. Internediaries act as both
client and server at different tines.

The term "payl oad body" is defined in Section 3.3 of [RFC7230].
3. Starting HTTP/ 2

An HTTP/ 2 connection is an application-layer protocol running on top
of a TCP connection ([TCP]). The client is the TCP connection
initiator.

HTTP/ 2 uses the sane "http" and "https" URl schemes used by HTTP/1.1.
HTTP/ 2 shares the same default port nunbers: 80 for "http" URIs and
443 for "https" URIs. As a result, inplenentations processing
requests for target resource URIs like "http://exanple.org/foo" or
"https://exanple.combar” are required to first discover whether the
upstream server (the i mediate peer to which the client wi shes to
establish a connection) supports HTTP/ 2.

The means by which support for HTTP/2 is deternmined is different for

"http" and "https" URIs. Discovery for "http" URIs is described in
Section 3.2. Discovery for "https" URIs is described in Section 3. 3.

Bel she, et al. St andards Track [Page 7]

RFC 7540 HTTP/ 2 May 2015

3.1. HITP/2 Version ldentification
The protocol defined in this docunment has two identifiers

o0 The string "h2" identifies the protocol where HITP/ 2 uses
Transport Layer Security (TLS) [TLS12]. This identifier is used
in the TLS application-layer protocol negotiation (ALPN) extension
[TLS-ALPN] field and in any place where HTTP/2 over TLS is
identified.

The "h2" string is serialized into an ALPN protocol identifier as
the two-octet sequence: 0x68, 0x32.

0 The string "h2c" identifies the protocol where HTTP/2 is run over
cleartext TCP. This identifier is used in the HTTP/ 1.1 Upgrade
header field and in any place where HITP/2 over TCP is identified.

The "h2c" string is reserved fromthe ALPN identifier space but
descri bes a protocol that does not use TLS.

Negoti ating "h2" or "h2c" inplies the use of the transport, security,
fram ng, and nmessage semantics described in this docunent.

3.2. Starting HITP/2 for "http" URI's

A client that nakes a request for an "http" URI w thout prior

know edge about support for HITP/2 on the next hop uses the HITP
Upgrade nechani sm (Section 6.7 of [RFC7230]). The client does so by
maki ng an HTTP/ 1.1 request that includes an Upgrade header field with
the "h2c" token. Such an HTTP/ 1.1 request MJST include exactly one
HTTP2- Settings (Section 3.2.1) header field.

For exanpl e:

GET / HITP/1.1

Host: server. exanpl e. com

Connection: Upgrade, HTTP2-Settings

Upgr ade: h2c

HTTP2- Setti ngs: <base64url encodi ng of HITP/ 2 SETTINGS payl oad>

Requests that contain a payl oad body MIUST be sent in their entirety
before the client can send HTTP/2 franmes. This neans that a large
request can bl ock the use of the connection until it is conpletely
sent.

If concurrency of an initial request with subsequent requests is

i mportant, an OPTIONS request can be used to performthe upgrade to
HTTP/ 2, at the cost of an additional round trip.

Bel she, et al. St andards Track [Page 8]

RFC 7540 HTTP/ 2 May 2015

A server that does not support HTTP/2 can respond to the request as
t hough the Upgrade header field were absent:

HTTP/ 1.1 200 K
Cont ent - Lengt h: 243
Cont ent - Type: text/htni

A server MJST ignore an "h2" token in an Upgrade header field.
Presence of a token with "h2" inplies HITP/ 2 over TLS, which is
i nstead negoti ated as described in Section 3.3.

A server that supports HTTP/ 2 accepts the upgrade with a 101
(Switching Protocols) response. After the enpty line that term nates
the 101 response, the server can begin sending HTTP/2 frames. These
frames MJST include a response to the request that initiated the

upgr ade.

For exanpl e:

HTTP/ 1.1 101 Switchi ng Protocols
Connection: Upgrade
Upgr ade: h2c

[HTTP/ 2 connection ..

The first HITP/ 2 frame sent by the server MJST be a server connection
preface (Section 3.5) consisting of a SETTINGS franme (Section 6.5).
Upon receiving the 101 response, the client MJUST send a connection
preface (Section 3.5), which includes a SETTINGS frane.

The HTTP/ 1.1 request that is sent prior to upgrade is assigned a
streamidentifier of 1 (see Section 5.1.1) with default priority
values (Section 5.3.5). Stream1l is inplicitly "half-closed" from
the client toward the server (see Section 5.1), since the request is
conpleted as an HTTP/ 1.1 request. After conmencing the HITP/ 2
connection, stream1l is used for the response.

3.2.1. HITP2-Settings Header Field

A request that upgrades fromHTTP/1.1 to HTTP/2 MJST include exactly
one "HTTP2-Settings" header field. The HITP2-Settings header field

is a connection-specific header field that includes paraneters that

govern the HTTP/ 2 connection, provided in anticipation of the server
accepting the request to upgrade.

HTTP2- Setti ngs = t oken68

Bel she, et al. St andards Track [Page 9]

RFC 7540 HTTP/ 2 May 2015

A server MJST NOT upgrade the connection to HTTP/2 if this header
field is not present or if nore than one is present. A server MJST
NOT send this header field.

The content of the HITP2-Settings header field is the payload of a
SETTINGS frane (Section 6.5), encoded as a base64url string (that is,
the URL- and fil enane-safe Base64 encodi ng described in Section 5 of
[RFCA648], with any trailing '= characters onmitted). The ABNF

[RFC5234] production for "token68" is defined in Section 2.1 of

[RFC7235] .

Since the upgrade is only intended to apply to the i medi ate
connection, a client sending the HITP2-Settings header field MJST
al so send "HTTP2-Settings" as a connection option in the Connection
header field to prevent it frombeing forwarded (see Section 6.1 of
[RFC7230]) .

A server decodes and interprets these values as it would any other
SETTINGS franme. Explicit acknow edgenent of these settings

(Section 6.5.3) is not necessary, since a 101 response serves as
implicit acknow edgenent. Providing these values in the upgrade
request gives a client an opportunity to provide parameters prior to
receiving any franmes fromthe server

3.3. Starting HITP/2 for "https" URIs

A client that nakes a request to an "https" URI uses TLS [TLS12] with
the application-layer protocol negotiation (ALPN) extension
[TLS- ALPN .

HTTP/ 2 over TLS uses the "h2" protocol identifier. The "h2c"
protocol identifier MJUST NOT be sent by a client or selected by a
server; the "h2c" protocol identifier describes a protocol that does
not use TLS.

Once TLS negotiation is conplete, both the client and the server MJST
send a connection preface (Section 3.5).

3.4. Starting HITP/2 with Prior Know edge
A client can learn that a particul ar server supports HITP/ 2 by ot her
means. For exanple, [ALT-SVC] describes a nechanismfor advertising
this capability.
A client MJIST send the connection preface (Section 3.5) and then NMAY

i medi ately send HTTP/2 frames to such a server; servers can identify
t hese connections by the presence of the connection preface. This

Bel she, et al. St andards Track [Page 10]

RFC 7540 HTTP/ 2 May 2015

only affects the establishnment of HTTP/ 2 connections over cleartext
TCP; inplenentations that support HTTP/2 over TLS MUST use protoco
negotiation in TLS [TLS-ALPN] .

Li kewi se, the server MJST send a connection preface (Section 3.5).

W thout additional information, prior support for HITP/2 is not a
strong signal that a given server will support HITP/2 for future
connections. For exanple, it is possible for server configurations
to change, for configurations to differ between instances in
clustered servers, or for network conditions to change.

3.5. HITP/ 2 Connection Preface

In HTTP/ 2, each endpoint is required to send a connection preface as
a final confirmation of the protocol in use and to establish the
initial settings for the HITP/ 2 connection. The client and server
each send a different connection preface.

The client connection preface starts with a sequence of 24 octets,
which in hex notation is:

0x505249202a20485454502f 322e300d0a0d0a534d0d0a0d0a

That is, the connection preface starts with the string "PRl *

HTTP/ 2.0\ r\n\r\nSMr\n\r\n"). This sequence MJST be foll owed by a
SETTINGS frame (Section 6.5), which MAY be enpty. The client sends
the client connection preface i mediately upon receipt of a 101

(Swi tching Protocols) response (indicating a successful upgrade) or
as the first application data octets of a TLS connection. |If
starting an HTTP/ 2 connection with prior know edge of server support
for the protocol, the client connection preface is sent upon
connection establishnent.

Note: The client connection preface is selected so that a |l arge

proportion of HTTP/1.1 or HITP/ 1.0 servers and internediaries do
not attenpt to process further frames. Note that this does not

address the concerns raised in [TALKI NG .

The server connection preface consists of a potentially enpty
SETTINGS franme (Section 6.5) that MJST be the first frame the server
sends in the HTTP/ 2 connection

The SETTINGS franes received froma peer as part of the connection

preface MJST be acknow edged (see Section 6.5.3) after sending the
connection preface.

Bel she, et al. St andards Track [Page 11]

RFC 7540 HTTP/ 2 May 2015

To avoid unnecessary latency, clients are pernmitted to send
additional franes to the server imediately after sending the client
connection preface, without waiting to receive the server connection
preface. It is inportant to note, however, that the server
connection preface SETTINGS frame m ght include paranmeters that
necessarily alter how a client is expected to communicate with the
server. Upon receiving the SETTINGS frane, the client is expected to
honor any paraneters established. In sone configurations, it is
possible for the server to transnmit SETTINGS before the client sends
addi tional franes, providing an opportunity to avoid this issue.

Cients and servers MJIST treat an invalid connection preface as a
connection error (Section 5.4.1) of type PROTOCOL_ERROR A GOAVWAY
frane (Section 6.8) MAY be onmitted in this case, since an invalid
preface indicates that the peer is not using HTTP/ 2.

4. HITP Franmes

Once the HITP/ 2 connection is established, endpoints can begin
exchangi ng franes.

4., 1. Frame For mat

Al franes begin with a fixed 9-octet header followed by a vari abl e-
| engt h payl oad.

T e +

| Length (24)

S S S +

| Type (8) | Flags (8) |

R . . +
| R Stream Il dentifier (31)

+=+ +
| Frame Payl oad (0...)

o e m e +

Figure 1: Frane Layout

The fields of the frane header are defined as:

Length: The length of the frame payl oad expressed as an unsi gned
24-bit integer. Values greater than 2714 (16,384) MJST NOT be
sent unless the receiver has set a |arger value for
SETTI NGS_MAX_FRAME_SI ZE

The 9 octets of the frane header are not included in this val ue.

Bel she, et al. St andards Track [Page 12]

RFC 7540 HTTP/ 2 May 2015

Type: The 8-bit type of the frane. The frame type determines the
format and senmantics of the frame. |nplenentati ons MJST ignore
and discard any frane that has a type that is unknown.

Flags: An 8-bit field reserved for bool ean flags specific to the
frame type

Fl ags are assigned senantics specific to the indicated frame type.
Fl ags that have no defined senmantics for a particular frame type
MUST be ignored and MJST be |eft unset (0x0) when sendi ng.

R Areserved 1-bit field. The semantics of this bit are undefined,
and the bit MJST remain unset (0x0) when sendi ng and MJST be
i gnored when receiving.

Stream ldentifier: A streamidentifier (see Section 5.1.1) expressed
as an unsigned 31-bit integer. The value 0x0 is reserved for
frames that are associated with the connection as a whol e as
opposed to an individual stream

The structure and content of the frame payload is dependent entirely
on the frame type.

4.2. Frane Size

The size of a frane payload is linmted by the nmaxi num size that a
receiver advertises in the SETTI NGS_MAX_FRAME_SI ZE setting. This
setting can have any val ue between 2714 (16, 384) and 2"24-1

(16, 777, 215) octets, inclusive.

Al'l i nplenmentations MJST be capable of receiving and nmininmally
processing frames up to 2714 octets in length, plus the 9-octet frane
header (Section 4.1). The size of the frame header is not included
when describing frame sizes.

Note: Certain frane types, such as PING (Section 6.7), inpose
additional linmts on the anount of payload data al |l owed.

An endpoi nt MJST send an error code of FRAME SIZE ERROR if a frame
exceeds the size defined in SETTI NGS_MAX FRAME S| ZE, exceeds any
limt defined for the frane type, or is too snmall to contain
mandatory frame data. A frane size error in a frane that could alter
the state of the entire connection MIST be treated as a connection
error (Section 5.4.1); this includes any frame carrying a header

bl ock (Section 4.3) (that is, HEADERS, PUSH PROM SE, and

CONTI NUATI ON), SETTINGS, and any frame with a streamidentifier of O.

Bel she, et al. St andards Track [Page 13]

RFC 7540 HTTP/ 2 May 2015

Endpoints are not obligated to use all available space in a frane.
Responsi veness can be inproved by using franmes that are snaller than
the permitted maxi mum size. Sending large frames can result in
delays in sending tinme-sensitive frames (such as RST_STREAM

W NDOW UPDATE, or PRIORITY), which, if blocked by the transm ssion of
a large frane, could affect performance.

4.3. Header Conpression and Deconpression

Just as in HITP/1, a header field in HITP/2 is a name with one or
nore associ ated val ues. Header fields are used within HTTP request
and response nessages as well as in server push operations (see
Section 8.2).

Header lists are collections of zero or nore header fields. Wen
transnmtted over a connection, a header list is serialized into a
header bl ock using HTTP header conpression [COWRESSION]. The
serialized header block is then divided into one or nopre octet
sequences, called header block fragnents, and transmtted within the
payl oad of HEADERS (Section 6.2), PUSH PROM SE (Section 6.6), or
CONTI NUATI ON (Section 6.10) franes.

The Cooki e header field [COXKIE] is treated specially by the HITP
mappi ng (see Section 8.1.2.5).

A receiving endpoint reassenbl es the header bl ock by concatenating
its fragnments and then deconpresses the block to reconstruct the
header |ist.

A conpl ete header block consists of either:

0 a single HEADERS or PUSH PROM SE frame, with the END HEADERS fl ag
set, or

0 a HEADERS or PUSH PROM SE frane with the END HEADERS flag cl eared
and one or nore CONTI NUATI ON franes, where the | ast CONTI NUATI ON
frane has the END HEADERS fl ag set.

Header conpression is stateful. One conpression context and one
deconpressi on context are used for the entire connection. A decoding
error in a header block MJST be treated as a connection error
(Section 5.4.1) of type COVWPRESSI ON ERROR.

Each header block is processed as a discrete unit. Header bl ocks
MUST be transnmitted as a contiguous sequence of franmes, with no
interleaved franes of any other type or fromany other stream The
last frame in a sequence of HEADERS or CONTI NUATI ON franmes has the

Bel she, et al. St andards Track [Page 14]

RFC 7540 HTTP/ 2 May 2015

END HEADERS flag set. The last franme in a sequence of PUSH PROM SE
or CONTI NUATI ON franes has the END HEADERS flag set. This allows a
header bl ock to be logically equivalent to a single frane.

Header bl ock fragnments can only be sent as the payl oad of HEADERS
PUSH PROM SE, or CONTI NUATI ON franes because these franes carry data
that can nodify the conpression context naintained by a receiver. An
endpoi nt recei vi ng HEADERS, PUSH PROM SE, or CONTI NUATI ON franmes
needs to reassenbl e header bl ocks and perform deconpression even if
the frames are to be discarded. A receiver MIST termnate the
connection with a connection error (Section 5.4.1) of type
COVPRESSI ON ERROR i f it does not deconpress a header bl ock

5. Streams and Ml tipl exing

A "streant is an independent, bidirectional sequence of franes
exchanged between the client and server within an HTTP/ 2 connection
Streans have several inportant characteristics

0 A single HITP/ 2 connection can contain multiple concurrently open
streanms, with either endpoint interleaving franes frommnultiple
streans.

0 Streans can be established and used unilaterally or shared by
either the client or server

o Streans can be closed by either endpoint.

o The order in which franes are sent on a streamis significant.
Reci pi ents process franes in the order they are received. In
particul ar, the order of HEADERS and DATA franes is semantically
significant.

0 Streans are identified by an integer. Streamidentifiers are
assigned to streans by the endpoint initiating the stream

Bel she, et al. St andards Track [Page 15]

RFC 7540 HTTP/ 2 May 2015

5.1. Stream States

The lifecycle of a streamis shown in Figure 2.

Fom e e e - +
send PP | | recv PP
ymmm - | idle |--------
/ | | \
v S + v
[TS + | [TS +
| | | send H/ | |
y o | reserved | | recv H | reserved |------ .
| | (local) | | | (renmote) | |
| tmmmmmm e + \Y; Fommmmea e e + |
| | Hoeeoe- + | |
| | recv ES | | send ES |
| send H | y - | open |------- | recv H
| | / | | \ | |
| v Vv e + v Vv |
tmmmmmm e +	tmmmmmm e +				
	hal f			hal f	
	closed		send R/	<closed	
	(renote)		recv R	(local)	
Fomm e - +	Fomm e - +				
	send ES /	recv ES /			
	send R/ v send R/				
	recv R e + recv R				
send R/ ‘'----------- >		<----------- " send R/			
recv R	closed	recv R			
e e e e eeeaaeaaaaas >| R ’
Fome e +
send: endpoi nt sends this frame
recv: endpoi nt receives this frame

H: HEADERS frame (with inplied CONTI NUATI ONs)

PP: PUSH_PROM SE frane (with inplied CONTI NUATI ONs)
ES: END_STREAM fl ag

R RST_STREAM frane

Figure 2: Stream States
Note that this diagram shows streamstate transitions and the franes
and flags that affect those transitions only. 1In this regard,

CONTI NUATI ON frames do not result in state transitions; they are
effectively part of the HEADERS or PUSH PROM SE that they foll ow.

Bel she, et al. St andards Track [Page 16]

RFC 7540 HTTP/ 2 May 2015

For the purpose of state transitions, the END STREAMflag is
processed as a separate event to the frame that bears it; a HEADERS
frame with the END STREAM fl ag set can cause two state transitions.

Bot h endpoi nts have a subjective view of the state of a streamthat
could be different when franes are in transit. Endpoints do not
coordi nate the creation of streans; they are created unilaterally by
ei ther endpoint. The negative consequences of a mismatch in states
are limted to the "closed" state after sending RST_STREAM where
franes m ght be received for sone tinme after cl osing.

Streans have the followi ng states

i dle:
All streans start in the "idle" state.

The following transitions are valid fromthis state

* Sending or receiving a HEADERS frane causes the streamto
becone "open". The streamidentifier is selected as described
in Section 5.1.1. The sane HEADERS franme can al so cause a
streamto i medi ately becone "hal f-cl osed"

* Sending a PUSH PROM SE frane on another streamreserves the
idle streamthat is identified for later use. The streamstate
for the reserved streamtransitions to "reserved (local)".

* Receiving a PUSH PROM SE frame on anot her streamreserves an
idle streamthat is identified for later use. The streamstate
for the reserved streamtransitions to "reserved (renote)".

* Note that the PUSH PROM SE frame is not sent on the idle stream

but references the newy reserved streamin the Prom sed Stream
IDfield.

Recei ving any frane ot her than HEADERS or PRIORITY on a streamin
this state MUST be treated as a connection error (Section 5.4.1)
of type PROTOCOL_ERROR

reserved (local):
A streamin the "reserved (local)" state is one that has been
proni sed by sending a PUSH PROM SE frane. A PUSH PROM SE frane
reserves an idle stream by associating the streamw th an open
streamthat was initiated by the renote peer (see Section 8.2).

Bel she, et al. St andards Track [Page 17]

RFC 7540 HTTP/ 2 May 2015

In this state, only the following transitions are possible:

* The endpoint can send a HEADERS franme. This causes the stream
to open in a "half-closed (renpte)" state.

* Either endpoint can send a RST_STREAM frane to cause the stream
to beconme "closed". This releases the stream reservation.

An endpoi nt MJUST NOT send any type of frame other than HEADERS,
RST_STREAM or PRIORITY in this state.

A PRICRITY or W NDOW UPDATE frame MAY be received in this state.
Recei ving any type of franme other than RST_STREAM PRICRITY, or
W NDOW_UPDATE on a streamin this state MIST be treated as a
connection error (Section 5.4.1) of type PROTOCOL_ERROR

reserved (renote):

A streamin the "reserved (renote)" state has been reserved by a
renot e peer.

In this state, only the following transitions are possible:

* Receiving a HEADERS franme causes the streamto transition to
"hal f-cl osed (local)".

* Either endpoint can send a RST_STREAM frame to cause the stream
to beconme "closed". This releases the stream reservati on.

An endpoint MAY send a PRICRITY frane in this state to
reprioritize the reserved stream An endpoint MJUST NOT send any
type of frane other than RST_STREAM W NDOW UPDATE, or PRIORITY in
this state.

Recei ving any type of franme other than HEADERS, RST_STREAM or
PRIORITY on a streamin this state MJST be treated as a connection
error (Section 5.4.1) of type PROTOCO.L_ERROR

open:
A streamin the "open" state nmay be used by both peers to send
franes of any type. In this state, sending peers observe
advertised streamlevel flowcontrol linmts (Section 5.2).

Fromthis state, either endpoint can send a frane with an
END_STREAM fl ag set, which causes the streamto transition into
one of the "hal f-closed" states. An endpoint sending an

Bel she, et al. St andards Track [Page 18]

RFC 7540 HTTP/ 2 May 2015

END STREAM fl ag causes the stream state to becone "hal f-cl osed
(local)"; an endpoint receiving an END STREAM fl ag causes the
stream state to becone "hal f-closed (renmpte)".

Ei t her endpoint can send a RST_STREAM frame fromthis state,
causing it to transition imediately to "cl osed"

hal f-cl osed (I ocal):
A streamthat is in the "half-closed (local)" state cannot be used
for sending frames other than W NDOW UPDATE, PRIORITY, and
RST_STREAM

A streamtransitions fromthis state to "cl osed" when a frane that
contains an END STREAM flag is received or when either peer sends
a RST_STREAM frane.

An endpoi nt can receive any type of frame in this state.
Providing flow control credit using WNDOW UPDATE frames is
necessary to continue receiving flowcontrolled franes. 1In this
state, a receiver can ignore W NDOW UPDATE franes, which night
arrive for a short period after a frame bearing the END _STREAM
flag is sent.

PRIORITY franes received in this state are used to reprioritize
streans that depend on the identified stream

hal f-cl osed (renvote):
A streamthat is "half-closed (remote)" is no | onger being used by
the peer to send frames. In this state, an endpoint is no |onger
obligated to naintain a receiver flowcontrol w ndow.

I f an endpoint receives additional frames, other than

W NDOW UPDATE, PRICRITY, or RST_STREAM for a streamthat is in
this state, it MJST respond with a streamerror (Section 5.4.2) of
type STREAM CLGSED.

A streamthat is "half-closed (renote)" can be used by the
endpoint to send franes of any type. In this state, the endpoint
continues to observe advertised streamlevel flowcontrol linmts
(Section 5.2).

A streamcan transition fromthis state to "closed" by sending a

frane that contains an END STREAM fl ag or when either peer sends a
RST_STREAM f r amne.

Bel she, et al. St andards Track [Page 19]

RFC 7540 HTTP/ 2 May 2015

cl osed:
The "cl osed" state is the terminal state.

An endpoi nt MJUST NOT send franes other than PRIORITY on a cl osed
stream An endpoint that receives any frame other than PRIORITY
after receiving a RST_STREAM MJST treat that as a streamerror
(Section 5.4.2) of type STREAM CLOSED. Simlarly, an endpoint
that receives any franes after receiving a frame with the
END_STREAM fl ag set MJUST treat that as a connection error
(Section 5.4.1) of type STREAM CLCSED, unless the frame is
permtted as described bel ow.

W NDOW UPDATE or RST_STREAM franmes can be received in this state
for a short period after a DATA or HEADERS frame contai ning an
END STREAM flag is sent. Until the renote peer receives and
processes RST_STREAM or the frame bearing the END STREAM flag, it
m ght send franmes of these types. Endpoints MJST ignore

W NDOW UPDATE or RST_STREAM franes received in this state, though
endpoi nts MAY choose to treat frames that arrive a significant
time after sending END STREAM as a connection error

(Section 5.4.1) of type PROTOCOL_ERROR

PRIORI TY frames can be sent on closed streans to prioritize
streans that are dependent on the closed stream Endpoints SHOULD
process PRIORITY franes, though they can be ignored if the stream
has been renoved fromthe dependency tree (see Section 5.3.4).

If this state is reached as a result of sending a RST_STREAM
frane, the peer that receives the RST_STREAM ni ght have al ready
sent -- or enqueued for sending -- franmes on the streamthat
cannot be withdrawn. An endpoint MJST ignore franmes that it
receives on closed streans after it has sent a RST_STREAM frane.
An endpoi nt MAY choose to linit the period over which it ignores
franes and treat frames that arrive after this time as being in
error.

Fl ow-controlled frames (i.e., DATA) received after sending
RST_STREAM are counted toward the connection flow control w ndow.
Even though these franes might be ignored, because they are sent
before the sender receives the RST_STREAM the sender will
consider the frames to count against the flow control w ndow

An endpoi nt night receive a PUSH PROM SE frane after it sends
RST_STREAM PUSH PROM SE causes a streamto becone "reserved"
even if the associated stream has been reset. Therefore, a
RST_STREAM i s needed to cl ose an unwanted prom sed stream

Bel she, et al. St andards Track [Page 20]

RFC 7540 HTTP/ 2 May 2015

In the absence of nore specific guidance el sewhere in this docunent,

i mpl ement ati ons SHOULD treat the receipt of a frame that is not
expressly permitted in the description of a state as a connection
error (Section 5.4.1) of type PROTOCOL_ERRCR Note that PRICORITY can
be sent and received in any streamstate. Franes of unknown types
are ignored.

An exanpl e of the state transitions for an HTTP request/response
exchange can be found in Section 8.1. An exanple of the state
transitions for server push can be found in Sections 8.2.1 and 8. 2. 2.

5.1.1. Streamldentifiers

Streans are identified with an unsigned 31-bit integer. Streans
initiated by a client MJST use odd-nunbered streamidentifiers; those
initiated by the server MJST use even-nunbered streamidentifiers. A
streamidentifier of zero (0x0) is used for connection contro
messages; the streamidentifier of zero cannot be used to establish a
new stream

HTTP/ 1.1 requests that are upgraded to HITP/2 (see Section 3.2) are
responded to with a streamidentifier of one (0x1). After the
upgrade conpl etes, streamOxl1l is "half-closed (local)" to the client.
Theref ore, stream O0x1 cannot be selected as a new streamidentifier
by a client that upgrades from HTTP/ 1. 1.

The identifier of a newly established stream MJST be nunerically
greater than all streans that the initiating endpoint has opened or
reserved. This governs streans that are opened using a HEADERS frane
and streans that are reserved using PUSH PROM SE. An endpoi nt that
recei ves an unexpected streamidentifier MJUST respond with a
connection error (Section 5.4.1) of type PROTOCOL_ERRCR

The first use of a new streamidentifier inplicitly closes al

streams in the "idle" state that mi ght have been initiated by that
peer with a |ower-valued streamidentifier. For exanple, if a client
sends a HEADERS frane on stream 7 w thout ever sending a franme on
stream 5, then stream5 transitions to the "closed" state when the
first frame for stream7 is sent or received

Streamidentifiers cannot be reused. Long-lived connections can
result in an endpoint exhausting the avail abl e range of stream
identifiers. Aclient that is unable to establish a new stream
identifier can establish a new connection for new streans. A server
that is unable to establish a new streamidentifier can send a GOAVWAY
frane so that the client is forced to open a new connection for new
streans.

Bel she, et al. St andards Track [Page 21]

RFC 7540 HTTP/ 2 May 2015

5.1.2. Stream Concurrency

A peer can limt the nunber of concurrently active streans using the
SETTI NGS_MAX_CONCURRENT_STREAMS paraneter (see Section 6.5.2) within
a SETTINGS frane. The maxi num concurrent streans setting is specific
to each endpoint and applies only to the peer that receives the
setting. That is, clients specify the maxi num nunber of concurrent
streams the server can initiate, and servers specify the nmaxi num
nurmber of concurrent streanms the client can initiate.

Streans that are in the "open" state or in either of the "half-

cl osed" states count toward the nmaxi mum nunber of streans that an
endpoint is permtted to open. Streanms in any of these three states
count toward the |linmt advertised in the

SETTI NGS_MAX_CONCURRENT_STREAMS setting. Streams in either of the
"reserved" states do not count toward the streamlimt.

Endpoi nts MJUST NOT exceed the limt set by their peer. An endpoint
that receives a HEADERS franme that causes its advertised concurrent
streamlimt to be exceeded MIST treat this as a streamerror
(Section 5.4.2) of type PROTOCOL_ERROR or REFUSED STREAM The choice
of error code determ nes whether the endpoint w shes to enable
automatic retry (see Section 8.1.4) for details).

An endpoi nt that w shes to reduce the val ue of

SETTI NGS_MAX_CONCURRENT_STREAMS to a value that is below the current
nurmber of open streams can either close streans that exceed the new
val ue or allow streanms to conplete

5.2. Flow Control

Using streams for nultiplexing introduces contention over use of the
TCP connection, resulting in blocked streans. A flowcontrol schene
ensures that streams on the sane connection do not destructively
interfere with each other. Flow control is used for both individua
streanms and for the connection as a whol e.

HTTP/ 2 provides for flow control through use of the W NDOW UPDATE
frame (Section 6.9).

Bel she, et al. St andards Track [Page 22]

RFC 7540 HTTP/ 2 May 2015

5.2.1. FlowControl Principles

HTTP/ 2 stream flow control ains to allow a variety of flowcontro
algorithms to be used without requiring protocol changes. Flow
control in HITP/2 has the follow ng characteristics

1. Flowcontrol is specific to a connection. Both types of flow
control are between the endpoints of a single hop and not over
the entire end-to-end path.

2. Flowcontrol is based on WNDOW UPDATE franmes. Receivers
adverti se how many octets they are prepared to receive on a
stream and for the entire connection. This is a credit-based
schene.

3. Flowcontrol is directional with overall control provided by the
receiver. A receiver MAY choose to set any wi ndow size that it
desires for each streamand for the entire connection. A sender
MUST respect flowcontrol limts inposed by a receiver. dients,
servers, and internediaries all independently advertise their
flow control wi ndow as a receiver and abide by the flowcontro
limts set by their peer when sending.

4, The initial value for the flowcontrol w ndow is 65,535 octets
for both new streans and the overall connection

5. The frame type determ nes whether flow control applies to a
franme. O the frames specified in this docunent, only DATA
franes are subject to flow control; all other frame types do not
consune space in the advertised flow control w ndow. This
ensures that inportant control franes are not bl ocked by flow
control

6. Fl ow control cannot be di sabl ed.

7. HITP/ 2 defines only the format and semantics of the W NDOW UPDATE
franme (Section 6.9). This docunent does not stipulate how a
recei ver decides when to send this frane or the value that it
sends, nor does it specify how a sender chooses to send packets.
| mpl enentations are able to select any algorithmthat suits their
needs.

| mpl enent ati ons are al so responsi bl e for managi ng how requests and
responses are sent based on priority, choosing howto avoid head- of -
Iine blocking for requests, and managi ng the creation of new streans.
Al gorithm choices for these could interact with any flow control

al gorithm

Bel she, et al. St andards Track [Page 23]

RFC 7540 HTTP/ 2 May 2015

5.2.2. Appropriate Use of Flow Contro

Fl ow control is defined to protect endpoints that are operating under
resource constraints. For exanple, a proxy needs to share nmenory

bet ween many connections and al so m ght have a sl ow upstream
connection and a fast downstream one. Flow control addresses cases
where the receiver is unable to process data on one streamyet wants
to continue to process other streans in the same connection

Depl oynments that do not require this capability can advertise a flow
control w ndow of the maxi mum size (2731-1) and can maintain this

wi ndow by sendi ng a W NDOW UPDATE franme when any data is received.
This effectively disables flow control for that receiver

Conversely, a sender is always subject to the flow control w ndow
advertised by the receiver.

Depl oyments with constrained resources (for exanple, nmenory) can
enploy flow control to linit the anount of nenory a peer can consune.
Not e, however, that this can |ead to suboptimal use of available
network resources if flow control is enabled w thout know edge of the
bandwi dt h- del ay product (see [RFC7323]).

Even with full awareness of the current bandw dt h-del ay product,

i npl enentation of flow control can be difficult. Wen using flow
control, the receiver MIST read fromthe TCP receive buffer in a
timely fashion. Failure to do so could |ead to a deadl ock when
critical frames, such as W NDOW UPDATE, are not read and acted upon

5.3. StreamPriority

A client can assign a priority for a new stream by includi ng
prioritization information in the HEADERS frane (Section 6.2) that
opens the stream At any other tinme, the PRRORITY frame

(Section 6.3) can be used to change the priority of a stream

The purpose of prioritization is to allow an endpoint to express how
it would prefer its peer to allocate resources when nmanagi ng
concurrent streams. Most inportantly, priority can be used to sel ect
streanms for transmitting frames when there is linited capacity for
sendi ng.

Streans can be prioritized by narking them as dependent on the
conpl etion of other streans (Section 5.3.1). Each dependency is
assigned a relative weight, a nunber that is used to determ ne the
relative proportion of available resources that are assigned to
streanms dependent on the sane stream

Bel she, et al. St andards Track [Page 24]

RFC 7540 HTTP/ 2 May 2015

Explicitly setting the priority for a streamis input to a
prioritization process. It does not guarantee any particul ar
processing or transmi ssion order for the streamrelative to any other
stream An endpoint cannot force a peer to process concurrent
streams in a particular order using priority. Expressing priority is
therefore only a suggestion

Prioritization information can be onmitted from nessages. Defaults
are used prior to any explicit val ues being provided (Section 5.3.5).

5.3.1. Stream Dependenci es

Each stream can be given an explicit dependency on another stream
I ncl udi ng a dependency expresses a preference to allocate resources
to the identified streamrather than to the dependent stream

A streamthat is not dependent on any other streamis given a stream
dependency of 0x0. |In other words, the non-existent streamO forns
the root of the tree.

A stream that depends on another streamis a dependent stream The
stream upon which a streamis dependent is a parent stream A
dependency on a streamthat is not currently in the tree -- such as a
streamin the "idle" state -- results in that stream being given a
default priority (Section 5.3.5).

When assigning a dependency on another stream the streamis added as
a new dependency of the parent stream Dependent streans that share
the sane parent are not ordered with respect to each other. For
exanple, if streans B and C are dependent on stream A, and if stream
Dis created with a dependency on stream A, this results in a
dependency order of A followed by B, C, and D in any order.

A A
I\ ==> /\
B C BDC

Figure 3: Exanple of Default Dependency Creation

An exclusive flag allows for the insertion of a new |evel of
dependenci es. The exclusive flag causes the streamto becone the
sol e dependency of its parent stream causing other dependencies to
becone dependent on the exclusive stream |In the previous exanpl e,

if streamDis created with an exclusive dependency on streamA, this
results in D becom ng the dependency parent of B and C

Bel she, et al. St andards Track [Page 25]

RFC 7540 HTTP/ 2 May 2015

A
A |
[\ ==> D
B C [\
B C

Fi gure 4: Exanpl e of Exclusive Dependency Creation

I nsi de the dependency tree, a dependent stream SHOULD only be

al l ocated resources if either all of the streans that it depends on
(the chain of parent streanms up to 0x0) are closed or it is not
possi bl e to nmake progress on them

A stream cannot depend on itself. An endpoint MJST treat this as a
streamerror (Section 5.4.2) of type PROTOCOL_ERRCR

5.3.2. Dependency Wi ghting

Al'l dependent streans are allocated an integer wei ght between 1 and
256 (inclusive).

Streams with the same parent SHOULD be al l ocated resources
proportionally based on their weight. Thus, if stream B depends on
stream A with weight 4, stream C depends on stream A with weight 12,
and no progress can be nade on stream A, stream B ideally receives
one-third of the resources allocated to streamC

5.3.3. Reprioritization

Stream priorities are changed using the PRRORITY frane. Setting a
dependency causes a streamto becone dependent on the identified
parent stream

Dependent streanms nove with their parent streamif the parent is
reprioritized. Setting a dependency with the exclusive flag for a
reprioritized stream causes all the dependenci es of the new parent
streamto becone dependent on the reprioritized stream

If a streamis made dependent on one of its own dependencies, the
fornerly dependent streamis first noved to be dependent on the
reprioritized streanis previous parent. The noved dependency retains
its weight.

For exanpl e, consider an original dependency tree where B and C
depend on A, D and E depend on C, and F depends on D. If A is nade
dependent on D, then D takes the place of A. Al other dependency
rel ati onshi ps stay the sane, except for F, which becones dependent on
Aif the reprioritization is exclusive.

Bel she, et al. St andards Track [Page 26]

RFC 7540 HTTP/ 2 May 2015

X X X X
I [\ I I
A D A D D
/I \ / /I \ I\
B C == F B C ==> F A oR A
[\ | [\ [\
D E E B C BCF
I I I
F E E
(i ntermedi at e) (non-excl usi ve) (excl usi ve)

Fi gure 5: Exanpl e of Dependency Reordering

5.3.4. Prioritization State Managenent

When a streamis renoved fromthe dependency tree, its dependencies
can be noved to becone dependent on the parent of the closed stream
The wei ghts of new dependencies are recal cul ated by distributing the
wei ght of the dependency of the closed stream proportionally based on
the weights of its dependenci es.

Streanms that are renoved from the dependency tree cause somne
prioritization information to be lost. Resources are shared between
streans with the sane parent stream which neans that if a streamin
that set closes or becones bl ocked, any spare capacity allocated to a
streamis distributed to the inmedi ate nei ghbors of the stream
However, if the common dependency is renoved fromthe tree, those
streams share resources with streans at the next highest |evel

For exanpl e, assune streans A and B share a parent, and streans C and
D both depend on stream A, Prior to the renoval of streamA, if
streans A and D are unable to proceed, then stream C receives all the

resources dedicated to streamA. |If stream A is renoved fromthe
tree, the weight of stream A is divided between streanms C and D. |If
stream D is still unable to proceed, this results in streamC

receiving a reduced proportion of resources. For equal starting
wei ghts, C receives one third, rather than one half, of available
resour ces

It is possible for a streamto becone closed while prioritization
informati on that creates a dependency on that streamis in transit.
If a streamidentified in a dependency has no associated priority

i nformati on, then the dependent streamis instead assigned a default
priority (Section 5.3.5). This potentially creates subopti nal
prioritization, since the streamcould be given a priority that is
different fromwhat is intended

Bel she, et al. St andards Track [Page 27]

RFC 7540 HTTP/ 2 May 2015

To avoid these problens, an endpoint SHOULD retain stream
prioritization state for a period after streans beconme closed. The
| onger state is retained, the |ower the chance that streans are
assigned incorrect or default priority val ues.

Simlarly, streanms that are in the "idle" state can be assigned
priority or becone a parent of other streans. This allows for the
creation of a grouping node in the dependency tree, which enables
nore flexible expressions of priority. Ildle streams begin with a
default priority (Section 5.3.5).

The retention of priority information for streans that are not
counted toward the linmt set by SETTINGS MAX CONCURRENT STREAMS coul d
create a large state burden for an endpoint. Therefore, the anount
of prioritization state that is retained MAY be linited.

The amount of additional state an endpoint maintains for
prioritization could be dependent on | oad; under high | oad,
prioritization state can be discarded to |limt reso