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Abstract

This document describes version 2 of the Internet Key Exchange (I1KE)
protocol. [IKE is a component of IPsec used for performing mutual
authentication and establishing and maintaining security associations
(SAs).

This version of the IKE specification combines the contents of what
were previously separate documents, including Internet Security
Association and Key Management Protocol (ISAKMP, RFC 2408), IKE (RFC
2409), the Internet Domain of Interpretation (DOl, RFC 2407), Network
Address Translation (NAT) Traversal, Legacy authentication, and
remote address acquisition.

Version 2 of IKE does not interoperate with version 1, but it has

enough of the header format in common that both versions can
unambiguously run over the same UDP port.
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1. Introduction

IP Security (IPsec) provides confidentiality, data integrity, access
control, and data source authentication to IP datagrams. These
services are provided by maintaining shared state between the source
and the sink of an IP datagram. This state defines, among other
things, the specific services provided to the datagram, which
cryptographic algorithms will be used to provide the services, and
the keys used as input to the cryptographic algorithms.

Establishing this shared state in a manual fashion does not scale
well. Therefore, a protocol to establish this state dynamically is
needed. This memo describes such a protocol -- the Internet Key
Exchange (IKE). This is version 2 of IKE. Version 1 of IKE was
defined in RFCs 2407, 2408, and 2409 [Pip98, MSST98, HC98]. This
single document is intended to replace all three of those RFCs.

Definitions of the primitive terms in this document (such as Security
Association or SA) can be found in [RFC4301].

Keywords "MUST"™, "MUST NOT", "REQUIRED", "SHOULD"™, "SHOULD NOT" and
"MAY'" that appear in this document are to be interpreted as described
in [Bra97].

The term "Expert Review" is to be interpreted as defined in
[RFC2434].

IKE performs mutual authentication between two parties and
establishes an IKE security association (SA) that includes shared
secret information that can be used to efficiently establish SAs for
Encapsulating Security Payload (ESP) [RFC4303] and/or Authentication
Header (AH) [RFC4302] and a set of cryptographic algorithms to be
used by the SAs to protect the traffic that they carry. In this
document, the term '"'suite" or "cryptographic suite" refers to a
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complete set of algorithms used to protect an SA. An initiator
proposes one or more suites by listing supported algorithms that can
be combined into suites in a mix-and-match fashion. IKE can also
negotiate use of IP Compression (IPComp) [IPCOMP] in connection with
an ESP and/or AH SA. We call the IKE SA an "IKE_SA"™. The SAs for
ESP and/or AH that get set up through that IKE_SA we call
"CHILD_SAs™".

All IKE communications consist of pairs of messages: a request and a
response. The pair is called an "exchange™. We call the first
messages establishing an IKE_SA IKE_SA_INIT and IKE_AUTH exchanges
and subsequent IKE exchanges CREATE_CHILD SA or INFORMATIONAL
exchanges. In the common case, there is a single IKE_SA INIT
exchange and a single IKE_AUTH exchange (a total of four messages) to
establish the IKE_SA and the first CHILD _SA. In exceptional cases,
there may be more than one of each of these exchanges. In all cases,
all IKE_SA INIT exchanges MUST complete before any other exchange
type, then all IKE_AUTH exchanges MUST complete, and following that
any number of CREATE_CHILD _SA and INFORMATIONAL exchanges may occur
in any order. In some scenarios, only a single CHILD SA is needed
between the IPsec endpoints, and therefore there would be no
additional exchanges. Subsequent exchanges MAY be used to establish
additional CHILD_SAs between the same authenticated pair of endpoints
and to perform housekeeping functions.

IKE message flow always consists of a request followed by a response.
It is the responsibility of the requester to ensure reliability. If
the response is not received within a timeout interval, the requester
needs to retransmit the request (or abandon the connection).

The first request/response of an IKE session (IKE_SA INIT) negotiates
security parameters for the IKE_SA, sends nonces, and sends Diffie-
Hellman values.

The second request/response (IKE_AUTH) transmits identities, proves
knowledge of the secrets corresponding to the two identities, and
sets up an SA for the first (and often only) AH and/or ESP CHILD_ SA.

The types of subsequent exchanges are CREATE_CHILD_SA (which creates
a CHILD_SA) and INFORMATIONAL (which deletes an SA, reports error
conditions, or does other housekeeping). Every request requires a
response. An INFORMATIONAL request with no payloads (other than the
empty Encrypted payload required by the syntax) is commonly used as a
check for liveness. These subsequent exchanges cannot be used until
the initial exchanges have completed.
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In the description that follows, we assume that no errors occur.
Modifications to the flow should errors occur are described in

section 2.21.

1. Usage Scenarios

IKE is expected to be used to negotiate ESP and/or AH SAs in a number
of different scenarios, each with its own special requirements.

1.1. Security Gateway to Security Gateway Tunnel

+—t—t—t—+—+ +—t—t—t—+—+
1 1 IPsec 1 1
Protected I'Tunnel I tunnel I'Tunnel 1 Protected
Subnet  <-->lEndpoint !<--———————- >1Endpoint !<--> Subnet
1 1 1 1
+—t—t—t—+—+ +—t—t—t—+—+

Figure 1: Security Gateway to Security Gateway Tunnel

In this scenario, neither endpoint of the IP connection implements
IPsec, but network nodes between them protect traffic for part of the
way. Protection is transparent to the endpoints, and depends on
ordinary routing to send packets through the tunnel endpoints for
processing. Each endpoint would announce the set of addresses
"behind™ i1t, and packets would be sent in tunnel mode where the inner
IP header would contain the IP addresses of the actual endpoints.

1.2. Endpoint-to-Endpoint Transport

Fot—t—t—t—+

Fot—t—t—t—+
1

! ! IPsec transport ! !
IProtected! or tunnel mode SA IProtected!
'Endpoint I<————— oo o o o >1Endpoint !

1
+—t—t—t—t+—+ +—t—t—t—t+—+

Figure 2: Endpoint to Endpoint

In this scenario, both endpoints of the IP connection implement
IPsec, as required of hosts in [RFC4301]. Transport mode will
commonly be used with no inner IP header. If there is an inner IP
header, the inner addresses will be the same as the outer addresses.
A single pair of addresses will be negotiated for packets to be
protected by this SA. These endpoints MAY implement application
layer access controls based on the IPsec authenticated identities of
the participants. This scenario enables the end-to-end security that
has been a guiding principle for the Internet since [RFC1958],
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[RFC2775], and a method of limiting the inherent problems with
complexity in networks noted by [RFC3439]. Although this scenario
may not be fully applicable to the IPv4 Internet, it has been
deployed successfully in specific scenarios within intranets using
IKEvi. It should be more broadly enabled during the transition to
IPv6 and with the adoption of IKEv2.

It is possible in this scenario that one or both of the protected
endpoints will be behind a network address translation (NAT) node, in
which case the tunneled packets will have to be UDP encapsulated so
that port numbers in the UDP headers can be used to identify
individual endpoints "behind" the NAT (see section 2.23).

1.1.3. Endpoint to Security Gateway Tunnel

+—t—t—t—t—+ +—t—t—t—t—+
1 1 IPsec 1 1 Protected
IProtected! tunnel ITunnel 1 Subnet
IEndpoint !<-——————-———— - >1Endpoint !<--- and/or

1 1 1 1 Internet
+—t—t—t—+—+ +—t—t—t—+—+

Figure 3: Endpoint to Security Gateway Tunnel

In this scenario, a protected endpoint (typically a portable roaming
computer) connects back to its corporate network through an IPsec-
protected tunnel. It might use this tunnel only to access
information on the corporate network, or it might tunnel all of its
traffic back through the corporate network in order to take advantage
of protection provided by a corporate firewall against Internet-based
attacks. In either case, the protected endpoint will want an IP
address associated with the security gateway so that packets returned
to it will go to the security gateway and be tunneled back. This IP
address may be static or may be dynamically allocated by the security
gateway. In support of the latter case, IKEv2 includes a mechanism
for the iInitiator to request an IP address owned by the security
gateway for use for the duration of its SA.

In this scenario, packets will use tunnel mode. On each packet from
the protected endpoint, the outer IP header will contain the source
IP address associated with its current location (i.e., the address
that will get traffic routed to the endpoint directly), while the
inner IP header will contain the source IP address assigned by the
security gateway (i.e., the address that will get traffic routed to
the security gateway for forwarding to the endpoint). The outer
destination address will always be that of the security gateway,
while the inner destination address will be the ultimate destination
for the packet.
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In this scenario, it is possible that the protected endpoint will be
behind a NAT. In that case, the IP address as seen by the security
gateway will not be the same as the IP address sent by the protected
endpoint, and packets will have to be UDP encapsulated in order to be
routed properly.

1.1.4. Other Scenarios

Other scenarios are possible, as are nested combinations of the
above. One notable example combines aspects of 1.1.1 and 1.1.3. A
subnet may make all external accesses through a remote security
gateway using an IPsec tunnel, where the addresses on the subnet are
routed to the security gateway by the rest of the Internet. An
example would be someone’s home network being virtually on the
Internet with static IP addresses even though connectivity is
provided by an ISP that assigns a single dynamically assigned IP
address to the user’s security gateway (where the static IP addresses
and an IPsec relay are provided by a third party located elsewhere).

1.2. The Initial Exchanges

Communication using IKE always begins with IKE_SA INIT and IKE_AUTH
exchanges (known in IKEvl as Phase 1). These initial exchanges
normally consist of four messages, though in some scenarios that
number can grow. All communications using IKE consist of
request/response pairs. We’ll describe the base exchange first,
followed by variations. The first pair of messages (IKE_SA_INIT)
negotiate cryptographic algorithms, exchange nonces, and do a
Diffie-Hellman exchange [DH].-

The second pair of messages (IKE_AUTH) authenticate the previous
messages, exchange identities and certificates, and establish the
first CHILD_SA. Parts of these messages are encrypted and integrity
protected with keys established through the IKE_SA INIT exchange, so
the identities are hidden from eavesdroppers and all fields in all
the messages are authenticated.

In the following descriptions, the payloads contained in the message
are indicated by names as listed below.

Notation Payload

AUTH Authentication

CERT Certificate

CERTREQ Certificate Request
CP Configuration

D Delete

E Encrypted
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EAP Extensible Authentication
HDR IKE Header

IDi Identification - Initiator
IDr Identification - Responder
KE Key Exchange

Ni, Nr Nonce

N NotiFfy

SA Security Association

TSI Traffic Selector - Initiator
TSr Traffic Selector - Responder
\Y Vendor ID

The details of the contents of each payload are described in section
3. Payloads that may optionally appear will be shown in brackets,
such as [CERTREQ], indicate that optionally a certificate request
payload can be included.

The initial exchanges are as follows:

Initiator Responder

HDR, SAil, KEi, Ni -——>

HDR contains the Security Parameter Indexes (SPIs), version numbers,
and flags of various sorts. The SAil payload states the
cryptographic algorithms the initiator supports for the IKE_SA. The
KE payload sends the initiator’s Diffie-Hellman value. Ni is the
initiator’s nonce.

<-- HDR, SArl, KEr, Nr, [CERTREQ]

The responder chooses a cryptographic suite from the initiator’s
offered choices and expresses that choice iIn the SArl payload,
completes the Diffie-Hellman exchange with the KEr payload, and sends
its nonce in the Nr payload.

At this point in the negotiation, each party can generate SKEYSEED,
from which all keys are derived for that IKE_SA. All but the headers
of all the messages that follow are encrypted and integrity
protected. The keys used for the encryption and integrity protection
are derived from SKEYSEED and are known as SK_e (encryption) and SK_a
(authentication, a.k.a. integrity protection). A separate SK e and
SK_a is computed for each direction. In addition to the keys SK e
and SK_a derived from the DH value for protection of the IKE_SA,
another quantity SK d is derived and used for derivation of further
keying material for CHILD _SAs. The notation SK { ... } indicates
that these payloads are encrypted and integrity protected using that
direction’s SK e and SK_a.
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HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
AUTH, SAi2, TSi, TSr} >

The initiator asserts its identity with the IDi payload, proves
knowledge of the secret corresponding to IDi and integrity protects
the contents of the first message using the AUTH payload (see section
2.15). 1t might also send its certificate(s) in CERT payload(s) and
a list of its trust anchors in CERTREQ payload(s). |If any CERT
payloads are included, the first certificate provided MUST contain
the public key used to verify the AUTH field. The optional payload
IDr enables the initiator to specify which of the responder’s
identities it wants to talk to. This is useful when the machine on
which the responder is running is hosting multiple identities at the
same IP address. The initiator begins negotiation of a CHILD_SA
using the SAi2 payload. The final fields (starting with SAi2) are
described in the description of the CREATE_CHILD_SA exchange.

<-- HDR, SK {IDr, [CERT,] AUTH,
SAr2, TSi, TSr}

The responder asserts its identity with the IDr payload, optionally
sends one or more certificates (again with the certificate containing
the public key used to verify AUTH listed first), authenticates its
identity and protects the integrity of the second message with the
AUTH payload, and completes negotiation of a CHILD_SA with the
additional fields described below in the CREATE_CHILD_SA exchange.

The recipients of messages 3 and 4 MUST verify that all signatures
and MACs are computed correctly and that the names in the ID payloads
correspond to the keys used to generate the AUTH payload.

1.3. The CREATE_CHILD_SA Exchange

This exchange consists of a single request/response pair, and was
referred to as a phase 2 exchange in IKEvl. It MAY be initiated by
either end of the IKE_SA after the initial exchanges are completed.

All messages following the initial exchange are cryptographically
protected using the cryptographic algorithms and keys negotiated in
the first two messages of the IKE exchange. These subsequent
messages use the syntax of the Encrypted Payload described in section
3.14. All subsequent messages included an Encrypted Payload, even if
they are referred to in the text as "empty".

Either endpoint may initiate a CREATE_CHILD_SA exchange, so in this

section the term "initiator”™ refers to the endpoint initiating this
exchange.
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A CHILD_SA is created by sending a CREATE_CHILD_SA request. The
CREATE_CHILD_SA request MAY optionally contain a KE payload for an
additional Diffie-Hellman exchange to enable stronger guarantees of
forward secrecy for the CHILD_SA. The keying material for the
CHILD_SA is a function of SK_d established during the establishment
of the IKE_SA, the nonces exchanged during the CREATE_CHILD_ SA
exchange, and the Diffie-Hellman value (if KE payloads are included
in the CREATE_CHILD_SA exchange).

In the CHILD_SA created as part of the initial exchange, a second KE
payload and nonce MUST NOT be sent. The nonces from the initial
exchange are used in computing the keys for the CHILD_ SA.

The CREATE_CHILD_SA request contains:

Initiator Responder
HDR, SK {[N1, SA, Ni, [KEi],
[TSi, TSrl} -—>

The initiator sends SA offer(s) in the SA payload, a nonce in the Ni
payload, optionally a Diffie-Hellman value in the KEi payload, and
the proposed traffic selectors in the TSi and TSr payloads. If this
CREATE_CHILD_SA exchange is rekeying an existing SA other than the
IKE_SA, the leading N payload of type REKEY_SA MUST identify the SA
being rekeyed. |If this CREATE_CHILD_SA exchange is not rekeying an
existing SA, the N payload MUST be omitted. If the SA offers include
different Diffie-Hellman groups, KEi MUST be an element of the group
the initiator expects the responder to accept. If it guesses wrong,
the CREATE_CHILD_SA exchange will fail, and it will have to retry
with a different KEi.

The message following the header is encrypted and the message
including the header is integrity protected using the cryptographic
algorithms negotiated for the IKE_SA.

The CREATE_CHILD_SA response contains:

<-—  HDR, SK {SA, Nr, [KEr],
[TSi, TSr1}

The responder replies (using the same Message ID to respond) with the
accepted offer in an SA payload, and a Diffie-Hellman value in the
KEr payload if KEi was included in the request and the selected
cryptographic suite includes that group. If the responder chooses a
cryptographic suite with a different group, it MUST reject the
request. The initiator SHOULD repeat the request, but now with a KEi
payload from the group the responder selected.

Kaufman Standards Track [Page 10]



RFC 4306 IKEvV2 December 2005

The traffic selectors for traffic to be sent on that SA are specified
in the TS payloads, which may be a subset of what the initiator of
the CHILD_SA proposed. Traffic selectors are omitted if this
CREATE_CHILD_SA request is being used to change the key of the
IKE_SA.

1.4. The INFORMATIONAL Exchange

At various points during the operation of an IKE_SA, peers may desire
to convey control messages to each other regarding errors or
notifications of certain events. To accomplish this, IKE defines an
INFORMATIONAL exchange. INFORMATIONAL exchanges MUST ONLY occur
after the initial exchanges and are cryptographically protected with
the negotiated keys.

Control messages that pertain to an IKE_SA MUST be sent under that
IKE_SA. Control messages that pertain to CHILD_SAs MUST be sent
under the protection of the IKE_SA which generated them (or its
successor if the IKE_SA was replaced for the purpose of rekeying).

Messages in an INFORMATIONAL exchange contain zero or more
Notification, Delete, and Configuration payloads. The Recipient of
an INFORMATIONAL exchange request MUST send some response (else the
Sender will assume the message was lost in the network and will
retransmit it). That response MAY be a message with no payloads.
The request message in an INFORMATIONAL exchange MAY also contain no
payloads. This is the expected way an endpoint can ask the other
endpoint to verify that it is alive.

ESP and AH SAs always exist in pairs, with one SA in each direction.
When an SA is closed, both members of the pair MUST be closed. When
SAs are nested, as when data (and IP headers if in tunnel mode) are
encapsulated first with IPComp, then with ESP, and finally with AH
between the same pair of endpoints, all of the SAs MUST be deleted
together. Each endpoint MUST close its incoming SAs and allow the
other endpoint to close the other SA iIn each pair. To delete an SA,
an INFORMATIONAL exchange with one or more delete payloads is sent
listing the SPIs (as they would be expected in the headers of inbound
packets) of the SAs to be deleted. The recipient MUST close the
designated SAs. Normally, the reply in the INFORMATIONAL exchange
will contain delete payloads for the paired SAs going iIn the other

direction. There is one exception. If by chance both ends of a set
of SAs independently decide to close them, each may send a delete
payload and the two requests may cross in the network. If a node

receives a delete request for SAs for which it has already issued a
delete request, it MUST delete the outgoing SAs while processing the
request and the incoming SAs while processing the response. In that
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case, the responses MUST NOT include delete payloads for the deleted
SAs, since that would result in duplicate deletion and could in
theory delete the wrong SA.

A node SHOULD regard half-closed connections as anomalous and audit
their existence should they persist. Note that this specification
nowhere specifies time periods, so it is up to individual endpoints
to decide how long to wait. A node MAY refuse to accept incoming
data on half-closed connections but MUST NOT unilaterally close them

and reuse the SPIs. If connection state becomes sufficiently messed
up, a node MAY close the IKE_SA; doing so will implicitly close all
SAs negotiated under it. It can then rebuild the SAs it needs on a

clean base under a new IKE_SA.
The INFORMATIONAL exchange is defined as:

Initiator Responder

HDR, SK {[N.] [D.] [CP.] ...} -->
<-- HDR, SK {[N.] [D.] [CP], --.}

The processing of an INFORMATIONAL exchange is determined by its
component payloads.

1.5. Informational Messages outside of an IKE_SA

IT an encrypted IKE packet arrives on port 500 or 4500 with an
unrecognized SPI, it could be because the receiving node has recently
crashed and lost state or because of some other system malfunction or
attack. |If the receiving node has an active IKE_SA to the IP address
from whence the packet came, it MAY send a notification of the
wayward packet over that IKE_SA in an INFORMATIONAL exchange. If it
does not have such an IKE_SA, it MAY send an Informational message
without cryptographic protection to the source IP address. Such a
message is not part of an informational exchange, and the receiving
node MUST NOT respond to it. Doing so could cause a message loop.

2. IKE Protocol Details and Variations

IKE normally listens and sends on UDP port 500, though IKE messages
may also be received on UDP port 4500 with a slightly different
format (see section 2.23). Since UDP is a datagram (unreliable)
protocol, IKE includes in its definition recovery from transmission
errors, including packet loss, packet replay, and packet forgery.
IKE is designed to function so long as (1) at least one of a series
of retransmitted packets reaches its destination before timing out;
and (2) the channel is not so full of forged and replayed packets so
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as to exhaust the network or CPU capacities of either endpoint. Even
in the absence of those minimum performance requirements, IKE is
designed to fail cleanly (as though the network were broken).

Although IKEv2 messages are intended to be short, they contain
structures with no hard upper bound on size (in particular, X.509
certificates), and IKEv2 itself does not have a mechanism for
fragmenting large messages. IP defines a mechanism for fragmentation
of oversize UDP messages, but implementations vary in the maximum
message size supported. Furthermore, use of IP fragmentation opens
an implementation to denial of service attacks [KPS03]. Finally,
some NAT and/or firewall implementations may block IP fragments.

All IKEv2 implementations MUST be able to send, receive, and process
IKE messages that are up to 1280 bytes long, and they SHOULD be able
to send, receive, and process messages that are up to 3000 bytes
long. [IKEv2 implementations SHOULD be aware of the maximum UDP
message size supported and MAY shorten messages by leaving out some
certificates or cryptographic suite proposals if that will keep
messages below the maximum. Use of the ""Hash and URL"™ formats rather
than including certificates in exchanges where possible can avoid
most problems. Implementations and configuration should keep in
mind, however, that if the URL lookups are possible only after the
IPsec SA is established, recursion issues could prevent this
technique from working.

2.1. Use of Retransmission Timers

All messages in IKE exist iIn palrs: a request and a response. The
setup of an IKE_SA normally consists of two request/response pairs.
Once the IKE_SA is set up, either end of the security association may
initiate requests at any time, and there can be many requests and
responses "in flight" at any given moment. But each message is
labeled as either a request or a response, and for each
request/response pair one end of the security association is the
initiator and the other is the responder.

For every pair of IKE messages, the initiator is responsible for
retransmission in the event of a timeout. The responder MUST never
retransmit a response unless it receives a retransmission of the
request. In that event, the responder MUST ignore the retransmitted
request except insofar as It triggers a retransmission of the
response. The initiator MUST remember each request until it receives
the corresponding response. The responder MUST remember each
response until it receives a request whose sequence number is larger
than the sequence number in the response plus its window size (see
section 2.3).
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IKE is a reliable protocol, in the sense that the initiator MUST
retransmit a request until either it receives a corresponding reply
OR i1t deems the IKE security association to have failed and it
discards all state associated with the IKE_SA and any CHILD_SAs
negotiated using that IKE_SA.

2.2. Use of Sequence Numbers for Message ID

Every IKE message contains a Message ID as part of its fixed header.
This Message ID is used to match up requests and responses, and to
identify retransmissions of messages.

The Message ID is a 32-bit quantity, which is zero for the first IKE
request iIn each direction. The IKE_SA initial setup messages will
always be numbered 0 and 1. Each endpoint in the IKE Security
Association maintains two "‘current” Message IDs: the next one to be
used for a request it iInitiates and the next one it expects to see in
a request from the other end. These counters increment as requests
are generated and received. Responses always contain the same
message ID as the corresponding request. That means that after the
initial exchange, each integer n may appear as the message ID in four
distinct messages: the nth request from the original IKE initiator,
the corresponding response, the nth request from the original IKE
responder, and the corresponding response. If the two ends make very
different numbers of requests, the Message IDs in the two directions
can be very different. There is no ambiguity in the messages,
however, because the (I)nitiator and (R)esponse bits in the message
header specify which of the four messages a particular one is.

Note that Message IDs are cryptographically protected and provide
protection against message replays. In the unlikely event that
Message IDs grow too large to fit in 32 bits, the IKE_SA MUST be
closed. Rekeying an IKE_SA resets the sequence numbers.

2.3. Window Size for Overlapping Requests

In order to maximize IKE throughput, an IKE endpoint MAY issue
multiple requests before getting a response to any of them if the
other endpoint has indicated its ability to handle such requests.
For simplicity, an IKE implementation MAY choose to process requests
strictly in order and/or wait for a response to one request before
issuing another. Certain rules must be followed to ensure
interoperability between implementations using different strategies.

After an IKE_SA is set up, either end can initiate one or more

requests. These requests may pass one another over the network. An
IKE endpoint MUST be prepared to accept and process a request while
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it has a request outstanding in order to avoid a deadlock in this
situation. An IKE endpoint SHOULD be prepared to accept and process
multiple requests while It has a request outstanding.

An IKE endpoint MUST wait for a response to each of Its messages
before sending a subsequent message unless it has received a
SET_WINDOW_SIZE Notify message from its peer informing it that the
peer is prepared to maintain state for multiple outstanding messages
in order to allow greater throughput.

An IKE endpoint MUST NOT exceed the peer’s stated window size for
transmitted IKE requests. In other words, if the responder stated
its window size is N, then when the iInitiator needs to make a request
X, 1t MUST wait until it has received responses to all requests up
through request X-N. An IKE endpoint MUST keep a copy of (or be able
to regenerate exactly) each request it has sent until it receives the
corresponding response. An IKE endpoint MUST keep a copy of (or be
able to regenerate exactly) the number of previous responses equal to
its declared window size in case its response was lost and the
initiator requests its retransmission by retransmitting the request.

An IKE endpoint supporting a window size greater than one SHOULD be
capable of processing incoming requests out of order to maximize
performance in the event of network failures or packet reordering.

2.4_. State Synchronization and Connection Timeouts

An IKE endpoint is allowed to forget all of its state associated with
an IKE_SA and the collection of corresponding CHILD SAs at any time.
This is the anticipated behavior in the event of an endpoint crash
and restart. It is important when an endpoint either fails or
reinitializes its state that the other endpoint detect those
conditions and not continue to waste network bandwidth by sending
packets over discarded SAs and having them fall into a black hole.

Since IKE is designed to operate in spite of Denial of Service (DoS)
attacks from the network, an endpoint MUST NOT conclude that the
other endpoint has failed based on any routing information (e.g.,
ICMP messages) or IKE messages that arrive without cryptographic
protection (e.g., Notify messages complaining about unknown SPISs).

An endpoint MUST conclude that the other endpoint has failed only
when repeated attempts to contact it have gone unanswered for a
timeout period or when a cryptographically protected INITIAL CONTACT
notification is received on a different IKE_SA to the same
authenticated identity. An endpoint SHOULD suspect that the other
endpoint has failed based on routing information and initiate a
request to see whether the other endpoint is alive. To check whether
the other side is alive, IKE specifies an empty INFORMATIONAL message
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that (like all IKE requests) requires an acknowledgement (hote that
within the context of an IKE_SA, an "empty" message consists of an
IKE header followed by an Encrypted payload that contains no
payloads). |If a cryptographically protected message has been
received from the other side recently, unprotected notifications MAY
be ignored. Implementations MUST limit the rate at which they take
actions based on unprotected messages.

Numbers of retries and lengths of timeouts are not covered in this
specification because they do not affect interoperability. It is
suggested that messages be retransmitted at least a dozen times over
a period of at least several minutes before giving up on an SA, but
different environments may require different rules. To be a good
network citizen, retranmission times MUST increase exponentially to
avoid Flooding the network and making an existing congestion
situation worse. |If there has only been outgoing traffic on all of
the SAs associated with an IKE_SA, it is essential to confirm
liveness of the other endpoint to avoid black holes. If no
cryptographically protected messages have been received on an IKE_SA
or any of its CHILD SAs recently, the system needs to perform a
liveness check iIn order to prevent sending messages to a dead peer.
Receipt of a fresh cryptographically protected message on an IKE_SA
or any of its CHILD_SAs ensures liveness of the IKE_SA and all of its
CHILD_SAs. Note that this places requirements on the failure modes
of an IKE endpoint. An implementation MUST NOT continue sending on
any SA if some failure prevents it from receiving on all of the
associated SAs. |If CHILD_SAs can fail independently from one another
without the associated IKE_SA being able to send a delete message,
then they MUST be negotiated by separate IKE_SAs.

There is a Denial of Service attack on the initiator of an IKE_SA
that can be avoided if the initiator takes the proper care. Since
the first two messages of an SA setup are not cryptographically
protected, an attacker could respond to the initiator’s message
before the genuine responder and poison the connection setup attempt.
To prevent this, the initiator MAY be willing to accept multiple
responses to its first message, treat each as potentially legitimate,
respond to it, and then discard all the invalid half-open connections
when it receives a valid cryptographically protected response to any
one of its requests. Once a cryptographically valid response is
received, all subsequent responses should be ignored whether or not
they are cryptographically valid.

Note that with these rules, there is no reason to negotiate and agree
upon an SA lifetime. If IKE presumes the partner is dead, based on
repeated lack of acknowledgement to an IKE message, then the IKE SA
and all CHILD_SAs set up through that IKE_SA are deleted.
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An IKE endpoint may at any time delete inactive CHILD SAs to recover
resources used to hold their state. If an IKE endpoint chooses to
delete CHILD_SAs, it MUST send Delete payloads to the other end
notifying it of the deletion. It MAY similarly time out the IKE_SA.
Closing the IKE_SA implicitly closes all associated CHILD SAs. In
this case, an IKE endpoint SHOULD send a Delete payload indicating
that it has closed the IKE_SA.

2.5. Version Numbers and Forward Compatibility

This document describes version 2.0 of IKE, meaning the major version
number is 2 and the minor version number is zero. It is likely that
some implementations will want to support both version 1.0 and
version 2.0, and in the future, other versions.

The major version number should be incremented only iIf the packet
formats or required actions have changed so dramatically that an
older version node would not be able to interoperate with a newer
version node if it simply ignored the fields it did not understand
and took the actions specified in the older specification. The minor
version number indicates new capabilities, and MUST be ignored by a
node with a smaller minor version number, but used for informational
purposes by the node with the larger minor version number. For
example, it might indicate the ability to process a newly defined
notification message. The node with the larger minor version number
would simply note that its correspondent would not be able to
understand that message and therefore would not send it.

IT an endpoint receives a message with a higher major version number,
it MUST drop the message and SHOULD send an unauthenticated
notification message containing the highest version number it
supports. If an endpoint supports major version n, and major version
m, it MUST support all versions between n and m. If It receives a
message with a major version that it supports, it MUST respond with
that version number. In order to prevent two nodes from being
tricked into corresponding with a lower major version number than the
maximum that they both support, IKE has a flag that indicates that
the node is capable of speaking a higher major version number.

Thus, the major version number in the IKE header indicates the
version number of the message, not the highest version number that
the transmitter supports. |If the initiator is capable of speaking
versions n, n+l, and n+2, and the responder is capable of speaking
versions n and n+l, then they will negotiate speaking n+l, where the
initiator will set the flag indicating its ability to speak a higher
version. If they mistakenly (perhaps through an active attacker
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sending error messages) nhegotiate to version n, then both will notice
that the other side can support a higher version number, and they
MUST break the connection and reconnect using version n+1.

Note that IKEvl does not follow these rules, because there is no way
in vl of noting that you are capable of speaking a higher version
number. So an active attacker can trick two v2-capable nodes into
speaking vl. When a v2-capable node negotiates down to v1, it SHOULD
note that fact in its logs.

Also for forward compatibility, all fields marked RESERVED MUST be
set to zero by a version 2.0 implementation and their content MUST be
ighored by a version 2.0 implementation ("'Be conservative in what you
send and liberal in what you receive™). In this way, future versions
of the protocol can use those fields In a way that is guaranteed to
be ignored by implementations that do not understand them.

Similarly, payload types that are not defined are reserved for future
use; implementations of version 2.0 MUST skip over those payloads and
ighore their contents.

IKEv2 adds a "‘critical" flag to each payload header for further
flexibility for forward compatibility. If the critical flag is set
and the payload type is unrecognized, the message MUST be rejected
and the response to the IKE request containing that payload MUST
include a Notify payload UNSUPPORTED CRITICAL_PAYLOAD, indicating an

unsupported critical payload was included. 1If the critical flag is
not set and the payload type is unsupported, that payload MUST be
ighored.

Although new payload types may be added in the future and may appear
interleaved with the fields defined in this specification,
implementations MUST send the payloads defined in this specification
in the order shown in the figures in section 2 and implementations
SHOULD reject as invalid a message with those payloads in any other
order.

2.6. Cookies

The term "cookies™ originates with Karn and Simpson [RFC2522] in
Photuris, an early proposal for key management with IPsec, and it has
persisted. The Internet Security Association and Key Management
Protocol (I1SAKMP) [MSST98] fixed message header includes two eight-
octet fields titled "cookies'", and that syntax is used by both IKEv1
and IKEv2 though in IKEv2 they are referred to as the IKE SPI and
there is a new separate field in a Notify payload holding the cookie.
The initial two eight-octet fields in the header are used as a
connection identifier at the beginning of IKE packets. Each endpoint
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chooses one of the two SPIs and SHOULD choose them so as to be unique
identifiers of an IKE_SA. An SPI value of zero is special and
indicates that the remote SPI value is not yet known by the sender.

Unlike ESP and AH where only the recipient’s SPl appears in the
header of a message, in IKE the sender’s SPI is also sent in every
message. Since the SPI chosen by the original initiator of the
IKE_SA is always sent first, an endpoint with multiple IKE_SAs open
that wants to find the appropriate IKE_SA using the SPIl it assigned
must look at the I(nitiator) Flag bit in the header to determine
whether it assigned the first or the second eight octets.

In the first message of an initial IKE exchange, the initiator will
not know the responder’s SPI value and will therefore set that field
to zero.

An expected attack against IKE is state and CPU exhaustion, where the
target is flooded with session initiation requests from forged IP
addresses. This attack can be made less effective if an
implementation of a responder uses minimal CPU and commits no state
to an SA until it knows the initiator can receive packets at the
address from which it claims to be sending them. To accomplish this,
a responder SHOULD -- when it detects a large number of half-open
IKE_SAs -- reject initial IKE messages unless they contain a Notify
payload of type COOKIE. It SHOULD instead send an unprotected IKE
message as a response and include COOKIE Notify payload with the
cookie data to be returned. Initiators who receive such responses
MUST retry the IKE_SA INIT with a Notify payload of type COOKIE
containing the responder supplied cookie data as the first payload
and all other payloads unchanged. The initial exchange will then be
as follows:

Initiator Responder
HDR(A,0), SAil, KEi, Ni -->
<—- HDR(A,0), N(COOKIE)
HDR(A,0), N(COOKIE), SAil, KEi, Ni -—>
<-- HDR(A,B)., SArl, KEr, Nr, [CERTREQ]

HDR(A,B), SK {IDi, [CERT,] [CERTREQ,] [IDr,]
AUTH, SAi2, TSi, TSr} -->

<-- HDR(A,B), SK {IDr, [CERT,] AUTH,
SAr2, TSi, TSr}
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The first two messages do not affect any initiator or responder state
except for communicating the cookie. In particular, the message
sequence numbers in the first four messages will all be zero and the
message sequence numbers in the last two messages will be one. A’ is
the SPI assigned by the initiator, while B’ is the SPl assigned by
the responder.

An IKE implementation SHOULD implement its responder cookie
generation iIn such a way as to not require any saved state to
recognize its valid cookie when the second IKE_SA INIT message
arrives. The exact algorithms and syntax they use to generate
cookies do not affect interoperability and hence are not specified
here. The following is an example of how an endpoint could use
cookies to implement limited DOS protection.

A good way to do this is to set the responder cookie to be:
Cookie = <VersionlDofSecret> | Hash(Ni | IPi | SPli | <secret>)

where <secret> is a randomly generated secret known only to the
responder and periodically changed and | indicates concatenation.
<VersionlDofSecret> should be changed whenever <secret> is
regenerated. The cookie can be recomputed when the IKE_SA_INIT
arrives the second time and compared to the cookie in the received
message. |If it matches, the responder knows that the cookie was
generated since the last change to <secret> and that IPi must be the
same as the source address it saw the first time. Incorporating SPIi
into the calculation ensures that if multiple IKE_SAs are being set
up in parallel they will all get different cookies (assuming the
initiator chooses unique SPli’s). [Incorporating Ni into the hash
ensures that an attacker who sees only message 2 can’t successfully
forge a message 3.

IT a new value for <secret> is chosen while there are connections in
the process of being initialized, an IKE_SA_INIT might be returned
with other than the current <VersionlDofSecret>. The responder in
that case MAY reject the message by sending another response with a
new cookie or it MAY keep the old value of <secret> around for a
short time and accept cookies computed from either one. The
responder SHOULD NOT accept cookies indefinitely after <secret> is
changed, since that would defeat part of the denial of service
protection. The responder SHOULD change the value of <secret>
frequently, especially if under attack.
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2.7. Cryptographic Algorithm Negotiation

The payload type known as '"'SA™ indicates a proposal for a set of
choices of IPsec protocols (IKE, ESP, and/or AH) for the SA as well
as cryptographic algorithms associated with each protocol.

An SA payload consists of one or more proposals. Each proposal
includes one or more protocols (usually one). Each protocol contains
one or more transforms -- each specifying a cryptographic algorithm.
Each transform contains zero or more attributes (attributes are
needed only if the transform identifier does not completely specify
the cryptographic algorithm).

This hierarchical structure was designed to efficiently encode
proposals for cryptographic suites when the number of supported
suites is large because multiple values are acceptable for multiple
transforms. The responder MUST choose a single suite, which MAY be
any subset of the SA proposal following the rules below:

Each proposal contains one or more protocols. I1f a proposal is
accepted, the SA response MUST contain the same protocols in the
same order as the proposal. The responder MUST accept a single
proposal or reject them all and return an error. (Example: if a
single proposal contains ESP and AH and that proposal is accepted,
both ESP and AH MUST be accepted. |If ESP and AH are included in
separate proposals, the responder MUST accept only one of them).

Each IPsec protocol proposal contains one or more transforms.
Each transform contains a transform type. The accepted
cryptographic suite MUST contain exactly one transform of each
type included in the proposal. For example: if an ESP proposal
includes transforms ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES
w/keysize 256, AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted
suite MUST contain one of the ENCR_ transforms and one of the
AUTH_ transforms. Thus, six combinations are acceptable.

Since the initiator sends its Diffie-Hellman value in the
IKE_SA_INIT, it must guess the Diffie-Hellman group that the
responder will select from its list of supported groups. If the
initiator guesses wrong, the responder will respond with a Notify
payload of type INVALID KE_PAYLOAD indicating the selected group. In
this case, the initiator MUST retry the IKE_SA INIT with the
corrected Diffie-Hellman group. The initiator MUST again propose its
full set of acceptable cryptographic suites because the rejection
message was unauthenticated and otherwise an active attacker could
trick the endpoints into negotiating a weaker suite than a stronger
one that they both prefer.
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2.8. Rekeying

IKE, ESP, and AH security associations use secret keys that SHOULD be
used only for a limited amount of time and to protect a limited
amount of data. This limits the lifetime of the entire security
association. When the lifetime of a security association expires,
the security association MUST NOT be used. |IFf there is demand, new
security associations MAY be established. Reestablishment of
security associations to take the place of ones that expire is
referred to as "rekeying".

To allow for minimal IPsec implementations, the ability to rekey SAs
without restarting the entire IKE _SA is optional. An implementation
MAY refuse all CREATE_CHILD_SA requests within an IKE_SA. If an SA
has expired or is about to expire and rekeying attempts using the
mechanisms described here fail, an implementation MUST close the
IKE_SA and any associated CHILD_SAs and then MAY start new ones.
Implementations SHOULD support in-place rekeying of SAs, since doing
so offers better performance and is likely to reduce the number of
packets lost during the transition.

To rekey a CHILD_SA within an existing IKE_SA, create a new,
equivalent SA (see section 2.17 below), and when the new one is
established, delete the old one. To rekey an IKE_SA, establish a new
equivalent IKE_SA (see section 2.18 below) with the peer to whom the
old IKE_SA is shared using a CREATE_CHILD_SA within the existing
IKE_SA. An IKE_SA so created inherits all of the original IKE_SA’s
CHILD _SAs. Use the new IKE_SA for all control messages needed to
maintain the CHILD SAs created by the old IKE_SA, and delete the old
IKE_SA. The Delete payload to delete itself MUST be the last request
sent over an IKE_SA.

SAs SHOULD be rekeyed proactively, i.e., the new SA should be
established before the old one expires and becomes unusable. Enough
time should elapse between the time the new SA is established and the
old one becomes unusable so that traffic can be switched over to the
new SA.

A difference between IKEvl and IKEv2 is that in IKEvl SA lifetimes
were negotiated. In IKEv2, each end of the SA is responsible for
enforcing its own lifetime policy on the SA and rekeying the SA when
necessary. |If the two ends have different lifetime policies, the end
with the shorter lifetime will end up always being the one to request
the rekeying. |If an SA bundle has been inactive for a long time and
if an endpoint would not initiate the SA in the absence of traffic,
the endpoint MAY choose to close the SA instead of rekeying it when
its lifetime expires. It SHOULD do so if there has been no traffic
since the last time the SA was rekeyed.
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IT the two ends have the same lifetime policies, it is possible that
both will initiate a rekeying at the same time (which will result in
redundant SAs). To reduce the probability of this happening, the
timing of rekeying requests SHOULD be jittered (delayed by a random
amount of time after the need for rekeying is noticed).

This form of rekeying may temporarily result in multiple similar SAs
between the same pairs of nodes. When there are two SAs eligible to
receive packets, a node MUST accept incoming packets through either
SA. If redundant SAs are created though such a collision, the SA
created with the lowest of the four nonces used in the two exchanges
SHOULD be closed by the endpoint that created it.

Note that IKEv2 deliberately allows parallel SAs with the same
traffic selectors between common endpoints. One of the purposes of
this is to support traffic quality of service (QoS) differences among
the SAs (see [RFC2474], [RFC2475], and section 4.1 of [RFC2983]).
Hence unlike IKEvl, the combination of the endpoints and the traffic
selectors may not uniquely identify an SA between those endpoints, so
the IKEvl rekeying heuristic of deleting SAs on the basis of
duplicate traffic selectors SHOULD NOT be used.

The node that initiated the surviving rekeyed SA SHOULD delete the
replaced SA after the new one is established.

There are timing windows -- particularly in the presence of lost
packets -- where endpoints may not agree on the state of an SA. The
responder to a CREATE_CHILD_SA MUST be prepared to accept messages on
an SA before sending its response to the creation request, so there
is no ambiguity for the initiator. The initiator MAY begin sending
on an SA as soon as it processes the response. The initiator,
however, cannot receive on a newly created SA until it receives and
processes the response to its CREATE_CHILD SA request. How, then, is
the responder to know when it is OK to send on the newly created SA?

From a technical correctness and interoperability perspective, the
responder MAY begin sending on an SA as soon as it sends its response
to the CREATE _CHILD_SA request. In some situations, however, this
could result in packets unnecessarily being dropped, so an
implementation MAY want to defer such sending.

The responder can be assured that the initiator is prepared to
receive messages on an SA if either (1) it has received a
cryptographically valid message on the new SA, or (2) the new SA
rekeys an existing SA and it receives an IKE request to close the
replaced SA. When rekeying an SA, the responder SHOULD continue to
send messages on the old SA until one of those events occurs. When
establishing a new SA, the responder MAY defer sending messages on a
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new SA until either it receives one or a timeout has occurred. If an
initiator receives a message on an SA for which it has not received a
response to its CREATE_CHILD_SA request, it SHOULD interpret that as
a likely packet loss and retransmit the CREATE_CHILD SA request. An
initiator MAY send a dummy message on a newly created SA if it has no
messages queued iIn order to assure the responder that the initiator
is ready to receive messages.

2.9. Traffic Selector Negotiation

When an IP packet is received by an RFC4301-compliant IPsec subsystem
and matches a "protect”™ selector in its Security Policy Database
(SPD), the subsystem MUST protect that packet with IPsec. When no SA
exists yet, it is the task of IKE to create it. Maintenance of a
system”s SPD is outside the scope of IKE (see [PFKEY] for an example
protocol), though some implementations might update their SPD in
connection with the running of IKE (for an example scenario, see
section 1.1.3).

Traffic Selector (TS) payloads allow endpoints to communicate some of
the information from their SPD to their peers. TS payloads specify
the selection criteria for packets that will be forwarded over the
newly set up SA. This can serve as a consistency check iIn some
scenarios to assure that the SPDs are consistent. In others, it
guides the dynamic update of the SPD.

Two TS payloads appear in each of the messages in the exchange that
creates a CHILD_SA pair. Each TS payload contains one or more
Traffic Selectors. Each Traffic Selector consists of an address
range (IPv4 or IPv6), a port range, and an IP protocol ID. In
support of the scenario described in section 1.1.3, an initiator may
request that the responder assign an IP address and tell the
initiator what it is.

IKEv2 allows the responder to choose a subset of the traffic proposed
by the initiator. This could happen when the configurations of the
two endpoints are being updated but only one end has received the new
information. Since the two endpoints may be configured by different
people, the incompatibility may persist for an extended period even
in the absence of errors. It also allows for intentionally different
configurations, as when one end is configured to tunnel all addresses
and depends on the other end to have the up-to-date list.

The first of the two TS payloads is known as TSi (Traffic Selector-
initiator). The second is known as TSr (Traffic Selector-responder).
TSi specifies the source address of traffic forwarded from (or the
destination address of traffic forwarded to) the initiator of the
CHILD_SA pair. TSr specifies the destination address of the traffic
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forwarded to (or the source address of the traffic forwarded from)
the responder of the CHILD SA pair. For example, if the original
initiator request the creation of a CHILD_SA pair, and wishes to
tunnel all traffic from subnet 192.0.1.* on the initiator’s side to
subnet 192.0.2.* on the responder’s side, the initiator would include
a single traffic selector in each TS payload. TSi would specify the
address range (192.0.1.0 - 192.0.1.255) and TSr would specify the
address range (192.0.2.0 - 192.0.2.255). Assuming that proposal was
acceptable to the responder, it would send identical TS payloads
back. (Note: The IP address range 192.0.2.* has been reserved for
use in examples in RFCs and similar documents. This document needed
two such ranges, and so also used 192.0.1.*. This should not be
confused with any actual address.)

The responder is allowed to narrow the choices by selecting a subset
of the traffic, for instance by eliminating or narrowing the range of
one or more members of the set of traffic selectors, provided the set
does not become the NULL set.

It is possible for the responder’s policy to contain multiple smaller
ranges, all encompassed by the initiator’s traffic selector, and with
the responder’s policy being that each of those ranges should be sent
over a different SA. Continuing the example above, the responder
might have a policy of being willing to tunnel those addresses to and
from the initiator, but might require that each address pair be on a
separately negotiated CHILD SA. If the initiator generated its
request in response to an incoming packet from 192.0.1.43 to
192.0.2.123, there would be no way for the responder to determine
which pair of addresses should be included in this tunnel, and it
would have to make a guess or reject the request with a status of
SINGLE_PAIR_REQUIRED.

To enable the responder to choose the appropriate range in this case,
if the iInitiator has requested the SA due to a data packet, the
initiator SHOULD include as the first traffic selector in each of TSi
and TSr a very specific traffic selector including th